Chapter 1: Introduction to Statistics

Section 1-2

- 1. Statistical significance is indicated when methods of statistics are used to reach a conclusion that some treatment or finding is effective, but common sense might suggest that the treatment or finding does not make enough of a difference to justify its use or to be practical. Yes, it is possible for a study to have statistical significance but not a practical significance.
- 2. If the source of the data can benefit from the results of the study, it is possible that an element of bias is introduced so that the results are favorable to the source.
- 3. A voluntary response sample is a sample in which the subjects themselves decide whether to be included in the study. A voluntary response sample is generally not suitable for a statistical study because the sample may have a bias resulting from participation by those with a special interest in the topic being studied.
- 4. Even if we conduct a study and find that there is a correlation, or association, between two variables, we cannot conclude that one of the variables is the cause of the other.
- 5. There does appear to be a potential to create a bias.
- 6. There does not appear to be a potential to create a bias.
- 7. There does not appear to be a potential to create a bias.
- 8. There does appear a potential to create a bias.
- 9. The sample is a voluntary response sample and is therefore flawed.
- 10. The sample is a voluntary response sample and is therefore flawed.
- 11. The sampling method appears to be sound.
- 12. The sampling method appears to be sound.
- 13. Because there is a 30% chance of getting such results with a diet that has no effect, it does not appear to have statistical significance, but the average loss of 45 pounds does appear to have practical significance.
- 14. Because there is only a 1% chance of getting the results by chance, the method appears to have a statistical significance. The result of 540 boys in 1000 births is above the approximately 50% rate expected by chance, but it does not appear to be high enough to have practical significance. Not many couples would bother with a procedure that raises the likelihood of a boy from 50% to 54%.
- 15. Because there is a 23% chance of getting such results with a program that has no effect, the program does not appear to have statistical significance. Because the success rate of 23% is not much better than the 20% rate that is typically expected with random guessing, the program does not appear to have practical significance.
- 16. Because there is a 25% chance of getting such results with a program that has no effect, the program does not appear to have statistical significance. Because the average increase is only 3 IQ point, the program does not appear to have practical significance.
- 17. The male and female pulse rates in the same column are not matched in any meaningful way. It does not make sense to use the difference between any of the pulse rates that are in the same column.
- 18. Yes, the source of the data is likely to be unbiased.
- 19. The data can be used to address the issue of whether males and females have pulse rates with the same average (mean) value.
- 20. The results do not prove that the populations of males and females have the same average (mean) pulse rate. The results are based on a particular sample of five males and five females, and analyzing other samples might lead to a different conclusion. Better results would be obtained with larger samples.

- 21. Yes, each IQ score is matched with the brain volume in the same column, because they are measurements obtained from the same person. It does not make sense to use the difference between each IQ score and the brain volume in the same column, because IQ scores and brain volumes use different units of measurement. For example, it would make no sense to find the difference between an IQ score of 87 and a brain volume of 1035 cm³.
- 22. The issue that can be addressed is whether there is a correlation, or association, between IQ score and brain volume.
- 23. Given that the researchers do not appear to benefit from the results, they are professionals at prestigious institutions, and funding is from a U.S. government agency, the source of the data appears to be unbiased.
- 24. No. Correlation does not imply causation, so a statistical correlation between IQ score and brain volume should not be used to conclude that larger brain volumes cause higher IQ scores.
- 25. It is questionable that the sponsor is the Idaho Potato Commission and the favorite vegetable is potatoes.
- 26. The sample is a voluntary response sample, so there is a good chance that the results are not valid.
- 27. The correlation, or association, between two variables does not mean that one of the variables is the cause of the other. Correlation does not imply causation.
- 28. The correlation, or association, between two variables does not mean that one of the variables is the cause of the other. Correlation does not imply causation.
- 29. a. The number of people is (0.39)(1018) = 397.02
 - b. No. Because the result is a count of people among 1018 who were surveyed, the result must be a whole number.
 - c. The actual number is 397 people
 - d. The percentage is $\frac{255}{1018} = 0.25049 = 25.049\%$
- 30. a. The number of women is (0.38)(427) = 162.26
 - b. No. Because the result is a count of women among 427 who were surveyed, the result must be a whole number.
 - b. The actual number is 162 women.
 - d. The percentage is $\frac{30}{427} = 0.07026 = 7.026\%$
- 31. a. The number of adults is (0.14)(2302) = 322.28
 - b. No. Because the result is a count of adults among 2302 who were surveyed, the result must be a whole number.
 - c. The actual number is 322 adults.
 - d. The percentage is $\frac{46}{2302} = 0.01998 = 1.998\%$
- 32. a. The number of adults is (0.76)(2513) = 1909.88
 - b. No. Because the result is a count of adults among 2513 who were surveyed, the result must be a whole number.
 - b. The actual number is 1910 adults.
 - d. The percentage is $\frac{327}{2513} = 0.13012 = 13.012\%$
- 33. Because a reduction of 100% would eliminate all of the size, it is not possible to reduce the size by 100% or more.

- 34. If the Club eliminated all car thefts, it would reduce the odds of car theft by 100%, so the 400% figure is impossible.
- 35. If foreign investment fell by 100% it would be totally eliminated, so it is not possible for it to fall by more than 100%.
- 36. Because a reduction of 100% would eliminate all plague, it is not possible to reduce it by more than 100%.
- 37. Without our knowing anything about the number of ATVs in use, or the number of ATV drivers, or the amount of ATV usage, the number of 740 fatal accidents has no context. Some information should be given so that the reader can understand the rate of ATV fatalities.
- 38. All percentages of success should be multiples of 5. The given percentage cannot be correct.
- 39. The wording of the question is biased and tends to encourage negative response. The sample size of 20 is too small. Survey respondents are self-selected instead of being selected by the newspaper. If 20 readers respond, the percentages should be multiples of 5, so 87% and 13% are not possible results.

Section 1-3

- 1. A parameter is a numerical measurement describing some characteristic of a population, whereas a statistic is a numerical measurement describing some characteristic of a sample.
- 2. Quantitative data consist of numbers representing counts or measurements, whereas categorical data can be separated into different categories that are distinguished by some characteristic that is not numerical.
- 3. Parts (a) and (c) describe discrete data.
- The values of 1010 and 55% are both statistics because they are based on the sample. The population consists of all adults in the United States.

5.	Statistic	17.	Discrete
6.	Parameter	18.	Discrete
7.	Parameter	19.	Continuous
8.	Statistic	20.	Continuous
9.	Parameter	21.	Nominal
10.	Parameter	22.	Ratio
11.	Statistic	23.	Interval
12.	Statistic	24.	Ordinal
13.	Continuous	25.	Ratio
14.	Discrete	26.	Nominal
15.	Discrete	27.	Ordinal
16	Continuous	28	Interval

- 29. The numbers are not counts or measures of anything, so they are at the nominal level of measurement, and it makes no sense to compute the average (mean) of them.
- 30. The flight numbers do not count or measure anything. They are at the nominal level of measurement, and it does not make sense to compute the average (mean) of them.
- 31. The numbers are used as substitutes for the categories of low, medium, and high, so the numbers are at the ordinal level of measurement. It does not make sense to compute the average (mean) of such numbers.
- 32. The numbers are substitutes for names and are not counts or measures of anything. They are at the nominal level of measurement, and it makes no sense to compute the average (mean) of them.

- 4 Essentials of Statistics, 5th edition
- 33. a. Continuous, because the number of possible values is infinite and not countable.
 - b. Discrete, because the number of possible values is finite.
 - c. Discrete, because the number of possible values is finite.
 - d. Discrete, because the number of possible values is infinite and countable.
- 34. Either ordinal or interval is a reasonable answer, but ordinal makes more sense because differences between values are not likely to be meaningful. For example, the difference between a food rated 1 and a food rated 2 is not necessarily the same as a difference between a food rated 9 and a food rated 10.
- 35. With no natural starting point, temperatures are at the interval level of measurement, so ratios such as "twice" are meaningless.

Section 1-4

- 1. No. Not every sample of the same size has the same chance of being selected. For example, the sample with the first two names has no chance of being selected. A simple random sample of (n) items is selected in such a way that every sample of same size has the same chance of being selected.
- 2. In an observational study, you would examine subjects who consume fruit and those who do not. In the observational study, you run a greater risk of having a lurking variable that affects weight. For example, people who consume more fruit might be more likely to maintain generally better eating habits, and they might be more likely to exercise, so their lower weights might be due to these better eating and exercise habits, and perhaps fruit consumption does not explain lower weights. An experiment would be better, because you can randomly assign subjects to the fruit treatment group and the group that does not get the fruit treatment, so lurking variables are less likely to affect the results.
- 3. The population consists of the adult friends on the list. The simple random sample is selected from the population of adult friends on the list, so the results are not likely to be representative of the much larger general population of adults in the United States.
- 4. Because there is nothing about left-handedness or right-handedness that would affect being in the author's classes, the results are likely to be typical of the population. The results are likely to be good, but convenience samples in general are not likely to be so good.
- 5. Because the subjects are subjected to anger and confrontation, they are given a form or treatment, so this is an experiment, not an observational study.
- 6. Because the subjects were given a treatment consisting of Lipitor, this is an experiment.
- 7. This is an observational study because the therapists were not given any treatment. Their responses were observed.
- 8. This is an observational study because the survey subjects were not given any treatment. Their responses were observed.

Cluster
Convenience
Random
Systematic
Random
Systematic
Cluster
Cluster
Convenience
Random
Systematic
Convenience
Random
Systematic
Systematic

- 21. The sample is not a simple random sample. Because every 1000th pill is selected, some samples have no chance of being selected. For example, a sample consisting of two consecutive pills has no chance of being selected, and this violates the requirement of a simple random sample.
- 22. The sample is not a simple random sample. Not every sample of 1500 adults has the same chance of being selected. For example, a sample of 1500 women has no chance of being selected.
- 23. The sample is a simple random sample. Every sample of size 500 has the same chance of being selected.

- 24. The sample is a simple random sample. Every sample of the same size has the same chance of being selected.
- 25. The sample is not a simple random sample. Not every sample has the same chance of being selected. For example, a sample that includes people who do not appear to be approachable has no chance of being selected.
- 26. The sample is not a simple random sample. Not all samples of the same size have the same chance of being selected. For example, a sample would not be selected which included people who do not appear to be approachable.
- 27. Prospective study
- 28. Retrospective study
- 29. Cross-sectional study
- 30. Prospective study

- 31. Matched pairs design
- 32. Randomized block design
- 33. Completely randomized design
- 34. Matched pairs design
- 35. Blinding is a method whereby a subject (or a person who evaluates results) in an experiment does not know whether the subject is treated with the DNA vaccine or the adenoviral vector vaccine. It is important to use blinding so that results are not somehow distorted by knowledge of the particular treatment used.
- 36. **Prospective**: The experiment was begun and results were followed forward in time. **Randomized**: Subjects were assigned to the different groups through the process of random selection, and whereby they had the same chance of belonging to each group. **Double-blind**: The subjects did not know which of the three groups they were in, and the people who evaluated results did not know either. Placebo-controlled: There was a group of subjects who were given a placebo, by comparing the placebo group to the two treatment groups, the effect of the treatments might be better understood.

Chapter Quick Quiz

- 1. No. The numbers do not measure or count anything.
- 2. Nominal

7. No.

3. Continuous

8. Statistic

4. Quantitative data

9. Observational study

5. Ratio

10 False

6. False

Review Exercises

- 1. a. Discrete
 - b. Ratio
 - c. Stratified
 - d. Cluster
 - The mailed responses would be a voluntary response sample, so those with strong opinions are more likely to respond. It is very possible that the results do not reflect the true opinions of the population of all costumers.
- 2. The survey was sponsored by the American Laser Centers, and 24% said that the favorite body part is the face, which happens to be a body part often chosen for some type of laser treatment. The source is therefore questionable.
- 3. The sample is a voluntary response sample, so the results are questionable.

- 4. a. It uses a voluntary response sample, and those with special interests are more likely to respond, so it is very possible that the sample is not representative of the population.
 - b. Because the statement refers to 72% of all Americans, it is a parameter (but it is probably based on a 72% rate from the sample, and the sample percentage is a statistic).
 - c. Observational study.
- 5. a. If they have no fat at all, they have 100% less than any other amount with fat, so the 125% figure cannot be correct.
 - b. The exact number is (0.58)(1182) = 685.56. The actual number is 686.

c.
$$\frac{331}{1182} = 0.28003 = 28.003\%$$

- 6. The Gallop poll used randomly selected respondents, but the AOL poll used a voluntary response sample. Respondents in the AOL poll are more likely to participate if they have strong feelings about the candidates, and this group is not necessarily representative of the population. The results from the Gallop poll were more likely to reflect the true opinions of American voters.
- 7. Because there is only a 4% chance of getting the results by chance, the method appears to have statistical significance. The results of 112 girls in 200 births is above the approximately 50% rate expected by chance, but it does not appear to be high enough to have practical significance. Not many couples would bother with a procedure that raises the likelihood of a girl from 50% to 56%.
- 8. a. Random
 - b. Stratified
 - c. Nominal
 - d. Statistic, because it is based on a sample.
 - e. The mailed responses would be a voluntary response sample. Those with strong opinions about the topic would be more likely to respond, so it is very possible that the results would not reflect the true opinions of the population of all adults.

- b. Random
- c. Cluster
- d. Stratified
- e. Convenience
- f. No, although this is a subjective judgment.

10. a.
$$0.52(1500) = 780$$
 adults

b.
$$\frac{345}{1500} = 0.23 = 23\%$$

c. Men:
$$\frac{727}{1500} = 0.485 = 48.5\%$$
;

Women:
$$\frac{773}{1500} = 0.515 = 51.5\%$$

Cumulative Review Exercises

- 1. The mean is 11. Because the flight numbers are not measures or counts of anything, the result does not have meaning.
- 2. The mean is 101, and it is reasonably close to the population mean of 100.

3.
$$\frac{(247-176)}{6} = 11.83$$
 is an unusually high value.

4.
$$\frac{(175-172)}{\left(\frac{29}{\sqrt{20}}\right)} = 0.46$$

5.
$$\frac{\left(1.96^2 \times 0.25\right)}{0.03^2} = 1067$$

6.
$$\frac{(88-88.57)^2}{88.57} = 0.0037$$

7.
$$\frac{\left(\left(96-100\right)^2+\left(106-100\right)^2+\left(98-100\right)^2\right)}{\left(3-1\right)}=28.0$$

8.
$$\sqrt{\frac{\left(\left(96-100\right)^2+\left(106-100\right)^2+\left(98-100\right)^2\right)}{\left(3-1\right)}}=\sqrt{28}=5.3$$

9.
$$0.6^{14} = 0.00078364164$$

10. $8^{12} = 68719476736$

11.
$$7^{14} = 678223072849$$

10.
$$8^{12} = 68719476736$$

12.
$$0.3^{10} = 0.0000059049$$